

DREYFOUS & ASSOCIATES

Course Overview

Environmental Science

TABLE OF CONTENT

Unit 1. Environmental Interrelationships1
Unit 2. Environmental Ethics2
Unit 3. Environmental Risk: Economics, Assessment and Management4
Unit 4. Interrelated Scientific Principles: Matter, Energy and Environment
Unit 5. Interaction: Environments and Organisms8
Unit 6. Kinds of Ecosystems and Communities11
Unit 7. Populations: Characteristics and Issues13
Unit 8. Energy and Civilization: Patterns of Consumption16
Unit 9. Energy Sources17
Unit 10. Nuclear Energy19
Unit 11. Biodiversity Issues21
Unit 12. Land-Use Planning23
Unit 13. Soil and its Uses25
Unit 14. Agricultural Methods and Pest Management27
Unit 15. Water Management29
Unit 16. Air Quality Issues
Unit 17. Solid Waste Management and Disposal
Unit 18. Environmental Regulations: Hazardous Substances and Wastes
Unit 19. Environmental Policy and Decision Making

Unit 1. Environmental Interrelationships

At the end of this unit, the student will:

- Understand why environmental problems are complex and interrelated.
- Realize that environmental problems involve social, ethical, political, and economic issues, not just scientific issues.
- Understand that acceptable solutions to environmental problems often are not easy to achieve.
- Understand that all organisms have an impact on their surroundings.
- Understand what is meant by an ecosystem approach to environmental problem solving.
- Recognize that different geographic regions have somewhat different environmental problems, but the process for resolving them is often the same and involves compromise.

Lesson 1. The Nature of Environmental Science

Code: C416G0SU01L01

Concepts

- ecosystem
- environment
- environmental science
- science

Lesson 2. Regional Environmental Concerns

Code: C416G0SU01L02

Concept

• wilderness

Unit 2. Environmental Ethics

At the end of this lesson, the student will:

- Understand the role of ethics in society.
- Recognize the importance of a personal ethical commitment.
- List three conflicting attitudes toward nature.
- Explain the connection between material wealth and resource exploitation.
- Describe the factors associated with environmental justice.
- Explain how corporate behavior connects to the state of the environment.
- Describe how environmental leaders in industry are promoting more sustainable practices.
- Describe the influences that corporations wield because of their size.
- Explain the relationship among economic growth and environmental degradation.
- Explain some of the relationship between affluence, poverty, and environmental degradation.
- Explain the importance of individual ethical commitments toward environment.
- Explain why global action on the environment is necessary.

Lesson 1. The Call for a New Ethic

Code: C416G0SU02L01

Concepts

- animal rights / welfare
- anthropocentrism
- biocentrism
- cultural relativism
- deep ecology
- ecocentrism
- ecofeminism
- environmental aesthetics
- environmental pragmatism
- ethics
- laws
- social ecology

Lesson 2. Environmental Attitudes / Environmental Justice

Code: C416G0SU02L02

- conservation
- environmental justice
- preservation
- sustainable development

Lesson 3. Environmental Ethics: Social, Corporate, and Individual Code: C416G0SU02L03

Concepts

- corporations
- ecological economics (environmental ecologics)
- economic growth
- industrial ecology
- natural capitalism
- profitability
- resource exploitation

Lesson 4. The Ethics of Consumption

Code: C416G0SU02L04

Concept

• energy

Lesson 5. Personal Choices / Global Environmental Ethics

Code: C416G0SU02L05

Concept

• ecological footprint

Unit 3. Environmental Risk: Economics, Assessment and Management

At the end of this lesson, the student will:

- Describe why the analysis or risk has become an important tool in environmental decision making.
- Understand the difference between risk assessment and risk management.
- Describe the issues involved in risk management.
- Understand the difference between true and perceived risks.
- Define what an economic good or service is.
- Understand the relationship between the available supply of a commodity or service and its price.
- Understand how and why cost-benefit analysis is used.
- Understand the concept of sustainable development.
- Understand environmental external costs and the economics of pollution prevention.
- Understand market approaches to solving environmental problems.
- Describe RBCA and Eco-RBCA.
- Understand what is meant by risk tolerance.
- Understand the concept of perceived versus actual risk.

Lesson 1. Characterizing Risk / Risk and Economics

Code: C416G0SU03L01

Concepts

- negligible risk
- probability
- risk
- risk assessment
- risk management

Lesson 2. Environmental Economics

Code: C416G0SU03L02

- biodegradable
- cost-benefit analysis
- deferred costs
- demand
- economics
- environmental costs
- external costs
- natural resources
- nonrenewable resources
- pollution

- pollution costs
- pollution prevention costs
- price
- renewable resources
- resources
- supply
- supply/demand curve

Lesson 3. Using Economic Tools to Address Environmental Issues Code: C416G0SU03L03

Concepts

- brownfields
- extended product responsibility
- life cycle analysis
- subsidy

Lesson 4. Economics and Sustainable Development

Code: C416G0SU03L04

- debt-for-nature exchanges
- developing nations
- economics
- environment
- sustainable development

Unit 4. Interrelated Scientific Principles: Matter, Energy and Environment

At the end of this lesson, the student will:

- Understand that science is usually reliable because information is gathered in a manner that requires impartial evaluation and continuous revision.
- Understand that matter is made up of atoms that have specific subatomic structure of protons, neutrons and electrons.
- Recognize that each element is made of atoms that have a specific number of protons and electrons and that isotopes of the same element may differ in the number of neutrons present.
- Recognize that atoms may be combined and held together by chemical bonds to produce molecules.
- Understand that rearranging chemical bonds results in chemical reactions and that these reactions are associated with energy changes.
- Recognize that matter may be solid, liquid or gas, depending on the amount of kinetic energy contained by the molecules.
- Realize that energy can be neither created nor destroyed, but when energy is converted from one form to another, some energy is converted into a less useful form.
- Understand that energy can be of different qualities.

Lesson 1. The Nature of Science / Limitations and Pseudoscience

Code: C416G0SU04L01

Concepts

- cause-and-effect relationships
- controlled experiment
- experiment
- hypothesis
- Kinetic molecular theory
- law of Conservation of Mass
- observation
- pseudoscience
- reproducibility
- science
- scientific law
- scientific method
- theory
- variables

Lesson 2. The Structure of Matter Code: C416G0SU04L02 Concepts

- acid
- activation energy
- atoms
- base
- catalyst
- chemical bonds
- compound
- electrons
- element
- endothermic reactions
- enzymes
- exothermic reactions
- hydroxide ions
- ions
- matter
- mixtures
- molecules
- neutrons
- nucleus
- pH
- photosynthesis
- protons
- respiration

Lesson 3. Energy Principles

Code: C416G0SU04L03

Concepts

- energy
- entropy
- first law of thermodynamics
- kinetic energy
- latent heat
- potential energy
- second law of thermodynamics
- sensible heat

Lesson 4. Environmental Implications of Energy Flow

Code: C416G0SU04L04

- combustion
- entropy
- pollution
- thermodynamics

Unit 5. Interaction: Environments and Organisms

At the end of this lesson, the student will:

- Identify and list abiotic and biotic factors in an ecosystem.
- Define niche.
- Describe the process of natural selection as it operates to refine the fit among organism, habitat and niche.
- Describe predator-prey, parasite-host, competitive, mutualism, and commensalistic relationships.
- Differentiate between a community and an ecosystem.
- Define the roles of producer, herbivore, carnivore, omnivore, scavenger, parasite, and decomposer.
- Describe energy flow through an ecosystem.
- Relate the concepts of food webs and food chains to trophic levels.
- Explain the cycling of nutrients such as nitrogen, carbon, and phosphorus through an ecosystem.

Lesson 1. Ecological Concepts

Code: C416G0SU05L01

Concepts

- abiotic factors
- biotic factors
- ecology
- environment
- habitat
- limiting factor
- niche
- range of tolerance

Lesson 2. The Role of Natural Selection and Evolution

Code: C416G0SU05L02

Concepts

- coevolution
- evolution
- extinction
- genes
- natural selection
- polyploidy
- population
- speciation
- species

Lesson 3. Kinds of Organism Interactions

Code: C416G0SU05L03

Concepts

- commensalism
- competition
- competitive exclusion principle
- ectoparasites
- endoparasites
- host
- interspecific competition
- intraspecific competition
- mutualism
- mycorrhizae
- parasite
- parasitism
- predation
- predator
- prey
- symbiosis
- vectors

Lesson 4. Community and Ecosystem Interactions

Code: C416G0SU05L04

- community
- ecosystem
- producers
- consumers
- primary consumers
- herbivores
- secondary consumers
- carnivores
- omnivores
- decomposers
- keystone species
- trophic level
- food chain
- biomass
- detritus
- food web
- biogeochemical cycles
- carbon cycle
- nitrogen cycle
- nitrifying bacteria

• denitrifying bacteria

Unit 6. Kinds of Ecosystems and Communities

At the end of this lesson, the student will:

- Recognize the difference between primary and secondary succession.
- Describe the process of succession from pioneer to climax community in both terrestrial and aquatic situations.
- Associate typical plants and animals with the various terrestrial biomes.
- Recognize the physical environmental factors that determine the kind of climax community the will develop.
- Differentiate the forest biomes that develop based on temperature and rainfall.
- Describe the various kinds of aquatic ecosystems and the factors that determine their characteristics.

Lesson 1. Succession

Code: C416G0SU06L01

Concepts

- climax community
- pioneer community
- primary succession
- secondary succession
- sere
- succession
- successional stage (seral stage)

Lesson 2. Biomes are Determined by Climate

Code: C416G0SU06L02

Concept

• biomes

Lesson 3. Major Biomes of the World (I)

Code: C416G0SU06L03

Concepts

- deserts
- temperate grasslands (prairies or steppes)
- savannas
- mediterranean shrublands
- tropical dry forest

Lesson 4. Major Biomes of the World (II)

Code: C416G0SU06L04

Concepts

• alpine tundra

- permafrost
- taiga (northern coniferous forest or boreal forest)
- temperate deciduous forests
- temperate rainforests
- tropical rainforests
- tundra

Lesson 5. Major Aquatic Ecosystems

Code: C416G0SU06L05

- abyssal ecosystem
- benthic ecosystem
- benthic organisms
- biochemical oxygen demand (BOD)
- coral reef ecosystem
- emergent plant
- estuary
- euphotic zone
- eutrophic lakes
- freshwater ecosystem
- littoral zone
- mangrove swamp ecosystem
- marine ecosystem
- marine ecosystem
- oligotrophic lakes
- pelagic ecosystem
- pelagic organisms
- periphyton
- phytoplankton
- plankton
- submergent plant
- zooplankton

Unit 7. Populations: Characteristics and Issues

At the end of this lesson, the student will:

- Understand that birthrate and death rate are both important in determining the population growth rate.
- Define the following characteristics of a population: natality, mortality, sex ratio, age distribution, biotic potential, and spatial distribution.
- Explain the significance of biotic potential to the rate of population growth.
- Describe the lag, exponential growth, deceleration, and stable equilibrium phases of a population growth curve. Explain why each of these stages occurs.
- Describe how limiting factors determine the carrying capacity for a population.
- List of the four categories of limiting factors.
- Recognize that humans are subject to the same forces of environmental resistance as are other organisms.
- Understand the implications of over reproduction.
- Explain how human population growth is influenced by social, theological, philosophical, and political thinking.
- Explain why the age distribution and the status and role of women affect population growth projections.
- Recognize that countries in the more-develop world are experiencing an increase in the average age of their populations.
- Recognize that most countries of the world have a rapidly growing population.
- Describe the implications of the demographic transition concept.
- Recognize that rapid population growth and poverty are linked.

Lesson 1. Population Characteristics

Code: C416G0SU07L01

Concepts

- age distribution
- birthrate
- death rate
- dispersal
- emigration
- immigration
- mortality
- natality
- population
- population density
- population growth rate
- survivorship curve

Lesson 2. A Population Growth Curve / Factors that Limit Population Size Code: C416G0SU07L02

Concepts

- biotic potential
- deceleration phase
- density-independent limiting factors
- environmental resistance
- exponential growth phase (log phase)
- extrinsic limiting factors
- intrinsic limiting factors
- lag phase
- limiting factors
- stable equilibrium phase

Lesson 3. Categories of Limiting Factors / Carrying Capactity

Code: C416G0SU07L03

Concepts

- carrying capacity
- death phase

Lesson 4. Reproductive Strategies and Population Fluctuations

Code: C416G0SU07L04

Concepts

- K-strategists
- r-strategists

Lesson 5. Human Population Growth / Characteristics and Implications

Code: C416G0SU07L05

Concepts

- ecological footprint
- less-develop countries
- more-develop countries
- population density

Lesson 6. Factors that Influence Human Population Growth

Code: C416G0SU07L06

Concepts

- age distribution
- demography
- replacement fertility
- total fertility rate
- zero population growth

Lesson 7. Population Growth Rates and Standard of Living Code: C416G0SU07L07

Concepts

- gross national income (GNI)
- standard of living

Lesson 8. The Demographic Transition Concept

Code: C416G0SU07L08

- demographic transition
- postwar baby boom

Unit 8. Energy and Civilization: Patterns of Consumption

At the end of this lesson, the student will:

- Explain why all organisms require a constant input of energy.
- Describe how per capita energy consumption increased as civilization advanced cultures.
- Describe hoy advanced modern civilizations developed as new fuels were used to run machines.
- Correlate the Industrial Revolution with social and economic changes.
- Explain how cheap oil and natural gas led to a consumption-oriented society.
- Explain how the automobile changed people's lifestyles.
- Explain why energy consumption is growing more rapidly in developing countries than in the industrialized world.
- Describe the role of OPEC in determining oil prices.

Lesson 1. History of Energy Consumption

Code: C416G0SU08L01

Concepts

- fossil fuels
- industrial Revolution

Lesson 2. How Energy is Used / Electrical Energy

Code: C416G0SU08L02

Concepts

- electrical energy
- energy

Lesson 3. The Economics and Politics of Energy Use

Code: C416G0SU08L03

Lesson 4. Energy Consumption Trends

Code: C416G0SU08L04

Unit 9. Energy Sources

At the end of this lesson, the student will:

- Differentiate between resources and reserves.
- Identify peat, lignite, bituminous coal, and anthracite coal as steps in the process of coal formation.
- Recognize that natural gas and oil are formed from ancient marine deposits.
- Explain how various methods of coal mining can have negative environmental impacts.
- Explain why surface mining of coal is used in some areas and underground mining in other areas.
- Explain why it is more expensive to find and produce oil today than it was in the past.
- Recognize that secondary recovery methods have been developed to increase the proportion of oil and natural gas is still a problem in some areas of the world.
- Explain why the amount of energy supplied by hydroelectric power is limited.
- Describe how wind, geothermal, and tidal energy are used to produce electricity.
- Recognize that wind, geothermal, and tidal energy can be developed only in areas with the proper geologic or geographical features.
- Describe how the use of solar energy in passive heating systems, active heating systems, and the generation of electricity.
- Recognize that fuel wood is a major source of energy in many parts of the lessdeveloped world and that fuel wood shortages are common.
- Describe the potential and limitations of biomass conversion and waste incineration as sources of energy.
- Recognize that energy conservation can significantly reduce our need for additional energy sources.

Lesson 1. Energy Sources / Resources and Reserves

Code: C416G0SU09L01

Concepts

- renewable energy sources
- nonrenewable energy sources
- resource
- reserves

Lesson 2. Issues Related to the Use of Fossil Fuels

Code: C416G0SU09L02

- black lung disease
- liquefied natural gas

- natural gas
- oil
- overburden
- surface mining
- underground mining

Lesson 3. Renewable Sources of Energy

Code: C416G0SU09L03

Concepts

- active solar system
- anaerobic digestion
- animal wastes
- biofuels production
- biomass
- crop residues
- direct combustion
- energy plantations
- fuelwood
- geothermal energy
- hydropower
- passive solar system
- pyrolysis
- solar energy
- solar furnace
- solid waste
- tidal power
- wind energy

Lesson 4. Energy Conservation

Code: C416G0SU09L04

- energy conservation
- fuel cells

Unit 10. Nuclear Energy

At the end of this lesson, the student will:

- Explain how nuclear fission has the potential to provide large amounts of energy.
- Describe how the nuclear reactor produces electricity.
- Describe the basic types of nuclear reactors.
- Explain the steps involved in the nuclear fuel cycle.
- List the concerns about the use of nuclear power.
- Explain the problem of decommissioning a nuclear plant.
- Describe how high-level radiation waste is stored.
- Describe the accident at Chernobyl.
- Explain how a breeder reactor differs from other nuclear reactors.

Lesson 1. The Nature of Nuclear Energy / History

Code: C416G0SU10L01

Concepts

- absorbed dose
- alpha radiation
- beta radiation
- dose equivalent
- gamma radiation
- ionizing radiation
- nuclear chain reaction
- nuclear fission
- radiation
- radioactive
- radioactive half-life

Lesson 2. Nuclear Fission Reactors

Code: C416G0SU10L02

Concepts

- boiling-water reactor
- fissionable
- gas-cooled reactor
- heavy-water reactor
- moderators
- nuclear reactor
- pressurized-water reactor
- Uranium 235 (U-235)

Lesson 3. Investigating Nuclear Alternatives Code: C416G0SU10L03

Concepts

- nuclear breeder reactor
- nuclear fusion
- plutonium 239 (Pu 239)

Lesson 4. The Nuclear Fuel Cycle

Code: C416G0SU10L04

Concepts

- fuel fabrication
- nuclear cycle
- reactor
- underground mining

Lesson 5. Nuclear Concerns

Code: C416G0SU10L05

Concepts

- nuclear power
- nuclear weapons
- transuranic nuclear waste
- thermal pollution
- decommissioning

Lesson 6. The Future of Nuclear Power

Code: C416G0SU10L06

Unit 11. Biodiversity Issues

At the end of this lesson, the student will:

- Recognize that humans significantly modify natural ecosystems.
- State the major causes of biodiversity loss.
- Give examples of genetic diversity, species diversity, and ecosystem diversity.
- Describe the values of biodiversity.
- Appreciate the ways of humans modify forests.
- Identify causes of desertification.
- Describe the role of endangered species legislation and the biodiversity treaty.
- Describe the techniques that foster the sustainable use of wildlife and fisheries resources.

Lesson 1. Biodiversity Loss and Extinction

Code: C416G0SU11L01

Concepts

- biodiversity
- extinction

Lesson 2. Describing Biodiversity

Code: C416G0SU11L02

Concepts

- biodiversity
- ecosystem diversity
- genetic diversity
- species diversity

Lesson 3. The Value of Biodiversity

Code: C416G0SU11L03

Lesson 4. Threats of Biodiversity

Code: C416G0SU11L04

- bush meat
- clear-cutting
- deforestation
- desertification
- habitat loss
- overexploitation
- patchwork clear-cutting
- reforestation
- selective harvesting

Lesson 5. What is Being done to Preserve Biodiversity?

Code: C416G0SU11L05

- endangered species
- habitat management
- migratory birds
- threatened species

Unit 12. Land-Use Planning

At the end of this lesson, the student will:

- Explain why the most major cities are located on rivers, lakes, or the ocean.
- Describe the forces that result in farmland adjacent to cities being converted to urban uses.
- Explain why floodplains and wetlands are often mismanaged.
- Describe the economic and social values involved in planning for outdoor recreation opportunities.
- Explain why some land must be designated for particular recreational uses, such as wilderness areas, and why that decision sometimes invites disagreement from those who do not wish to use the land in the designated way.
- List the steps in the development and implementation of a land-use plan.
- Describe the methods of enforcing compliance with land-use plans.
- Describe the advantages and disadvantages of both local and regional land-use planning.
- Describe the concept of smart growth.

Lesson 1. The Need for Planning

Code: C416G0SU12L01

Concepts

- megalopolis
- ribbon sprawl
- tract development

Lesson 2. Factors that Contribute to Sprawl

Code: C416G0SU12L02

Concepts

- economic factors
- policy factors

Lesson 3. Problems Associated with Unplanned Urban Growth (I)

Code: C416G0SU12L03

Concept

• infrastructure

Lesson 4. Problems Associated with Unplanned Urban Growth (II)

Code: C416G0SU12L04

- floodplain zoning ordinances
- floodplains
- land-use planning

- urban growth limit
- wetlands

Lesson 5. Mechanism for Implementing Land-Use Plans Zoning Code: C416G0SU12L05

Lesson 6. Special Urban Planning Issues

Code: C416G0SU12L06

- brownfields
- brownfields development

Unit 13. Soil and its Uses

At the end of this lesson, the student will:

- Describe the geological process that build and erode the Earth's surface.
- List the physical, chemical, and biological factors involved in soil formation.
- Explain the importance of hummus to soil fertility.
- Differentiate between soil texture and soil structure.
- Explain how texture and structure influence soil atmosphere and soil water.
- Explain the role of living organisms in soil formation and fertility.
- Describe the various layers in a soil profile.
- Describe the process of soil erosion by water and wind.
- Explain how contour farming, strip farming, terracing, waterways, windbreaks, and conservation tillage reduce soil erosion.
- Understand that the misuse of soil reduces soil fertility, pollutes streams, and requires expensive remedial measures.
- Explain how land not suited for cultivation may still be productively used for other purposes.

Lesson 1. Geological Process / Soil (Land and Formation)

Code: C416G0SU13L01

Concepts

- asthenosphere
- chemical weathering
- crust
- humus
- land
- lithosphere
- mantle
- mechanical weathering
- parent material
- plate tectonics
- soil
- weathering

Lesson 2. Soil: Properties, Profile and Erosion

Code: C416G0SU13L02

- erosion
- friable
- horizon
- leaching

- litter
- loam
- soil profile
- soil structure
- soil texture

Lesson 3. Soil Conservation Practices

Code: C416G0SU13L03

Concepts

- contour farming
- strip farming
- terraces
- waterways
- windbreaks

Lesson 4. Conventional versus Conservation Tillage

Code: C416G0SU13L04

- conservation tillage
- reduce tillage

Unit 14. Agricultural Methods and Pest Management

At the end of this lesson, the student will:

- Explain how mechanization encouraged monoculture farming.
- List the advantages and disadvantages of monoculture farming.
- Explain why chemical fertilizers are used.
- Understand how fertilizers alter soil characteristics.
- Explain why modern agriculture makes extensive use of pesticides.
- Differentiate between persistent pesticides and nonpersistent pesticides.
- List four problems associated with pesticide use.
- Define biomagnification.
- Define organic farming.
- Explain why integrated pest management depends on a complete knowledge of the pest's life history.
- Recognize that genetically modified crops are created by using biotechnological techniques to insert genes from one species into another.

Lesson 1. The Development of Agriculture

Code: C416G0SU14L01

Concepts

- green Revolution
- monoculture

Lesson 2. The Impact of Fertilizer

Code: C416G0SU14L02

- auxins
- biocides
- carbamates
- chlorinated hydrocarbons
- fungicides
- herbicides
- insecticides
- macronutrients
- micronutrients
- nonpersistent pesticide
- nontarget organism
- organophosphates
- persistent pesticides
- pesticide
- pests
- rodenticides

- target organism
- weeds

Lesson 3. Problems with Pesticide Use

Code: C416G0SU14L03

Concepts

- bioaccumulation
- biomagnification

Lesson 4. Alternatives to Conventional Agriculture

Code: C416G0SU14L04

- alternative agriculture
- genetic engineering (biotechnology)
- genetically modified organism
- integrated pest management
- organically grown
- pheromone
- precision agriculture
- sustainable agriculture

Unit 15. Water Management

At the end of this lesson, the student will:

- Explain how water is cycled through the hydrologic cycle.
- Explain the significance of groundwater, aquifers, and runoff.
- Explain how land use affects infiltration and surface runoff.
- List the various kinds of water use and the problems associated with each.
- List the problems associated with water impoundment.
- List the major sources of water pollution.
- Define biochemical oxygen demand (BOD).
- Differentiate between point and nonpoint sources of pollution.
- Explain how heat can be a form of pollution.
- Differentiate among primary, secondary, and tertiary sewage treatments.
- Describe some of the problems associated with stormwater runoff.
- List sources of groundwater pollution.
- Explain how various federal laws control water use and prevent misuse.
- List the problems associated with water-use planning.
- Explain the rationale behind the federal laws that attempt to preserve certain water areas and habitats.
- List the problems associated with groundwater mining.
- Explain the problem of salinization associated with large-scale irrigation in arid areas.
- List the water-related services provided by local goverments.

Lesson 1. Hydrologic Cycle

Code: C416G0SU15L01

- Potable water
- Hydrologic cycle
- Evapotranspiration
- Runoff
- Groundwater
- Aquifer
- Unconfined aquifer
- Water table
- Vadose zone
- Confined aquifer
- Aquiclude
- Aquitard
- Artesian wells
- Porosity

Lesson 2. Kinds of Water Use

Code: C416G0SU15L02

Concepts

- domestic water
- industrial water use
- in-stream water use
- irrigation

Lesson 3. Kinds and Sources of Water Pollution

Code: C416G0SU15L03

Concepts

- biochemical oxygen demand (BOD)
- eutrophication
- fecal coliform bacteria
- limiting factor
- thermal pollution

Lesson 4. Water-Use Planning Issues

Code: C416G0SU15L04

- activated-sludge sewage treatment
- groundwater mining
- primary sewage treatment
- salinization
- saltwater intrusion
- secondary sewage treatment
- sewage sludge
- stormwater runoff
- tertiary sewage treatment
- trickling filter system
- water diversion

Unit 16. Air Quality Issues

At the end of this lesson, the student will:

- Recognize that air can accept and disperse significant amounts of pollutants.
- List the major sources and effects of the six criteria air pollutants.
- Describe how photochemical smog is formed and how it affects humans.
- Explain how acid rain is formed.
- Understand that human activities can alter the atmosphere in such a way that they can change climate.
- Describe the kinds of changes that could occur as a result of global warming.
- Describe the links between chlorofluorocarbon use and ozone depletion.
- Recognize that there are many positive actions that have improved air quality.
- Recognize that enclosed areas can trap air pollutants that are normally diluted in the atmosphere.

Lesson 1. The Atmosphere

Code: C416G0SU16L01

Concepts

- atmosphere
- carcinogenic
- criteria air pollutants
- hazardous air pollutants (air toxics)
- hydrocarbons
- nitrogen dioxide
- nitrogen monoxide
- nitrogen oxides
- ozone
- particulate matter
- photochemical smog
- primary air pollutants
- secondary air pollutants
- sulfur dioxide
- thermal inversion
- volatile organic compounds

Lesson 2. Control of Air Pollution / Acid Deposition

Code: C416G0SU16L02

Concept

acid deposition

Lesson 3. Ozone Depletion / Global Warming

Code: C416G0SU16L03

Concepts

- carbon dioxide
- chlorofluorocarbons (CFC)
- climate change
- global warming
- greenhouse effect
- greenhouse gases
- methane
- nitrous oxide

Lesson 4. Addressing Climate Change

Code: C416G0SU16L04

Concepts

- biomass
- energy efficiency

Lesson 5. Indoor Air Pollution / Noise Pollution

Code: C416G0SU16L05

- air pollution
- decibels
- noise pollution
- radon

Unit 17. Solid Waste Management and Disposal

At the end of this lesson, the student will:

- Explain why solid waste is a problem throughout the world.
- Understand that the management of municipal solid waste is directly affected by economics, changes in technology, and citizen awareness and involvement.
- Describe the various methods of waste disposal and the problems associated with each method.
- Understand the difficulties in developing new municipal landfills.
- Define the problems associated with incineration as a method of waste disposal.
- Describe some methods of source reduction.
- Describe composting and how it fits into solid waste disposal.
- List some benefits and drawbacks of recycling.

Lesson 1. Solid Waste

Code: C416G0SU17L01

Concepts

- agricultural waste
- industrial solid waste
- mining waste
- municipal solid waste (MSW)
- solid waste

Lesson 2. Methods of Waste Disposal

Code: C416G0SU17L02

- composting
- incineration
- landfill
- leachate
- mass burn
- mulch
- municipal solid waste landfill
- recycling
- source reduction

Unit 18. Environmental Regulations: Hazardous Substances and Wastes

At the end of this lesson, the student will:

- Distinguish between hazardous substances and hazardous wastes.
- Distinguish between hazardous and toxic substances.
- Describe the four characteristics used to identify hazardous substances.
- Describe the kinds of environmental problems caused by hazardous and toxic substances.
- Understand the difference between persistent and nonpersistent pollutants.
- Describe the difference between chronic and acute exposures to hazardous wastes.
- Describe why hazardous-waste dump sites developed.
- Describe how hazardous waste are managed, and list five technologies used in their disposal.
- Describe the importance of source reduction with regard to hazardous wastes.
- Describe when and why an Environmental Site Assessment would be conducted.
- Describe the benefits from enacting the ISO 14000 Environmental Management System.
- Understand the difficulties associated with determining cleanup criteria for hazardous substances/wastes,

Lesson 1. Hazardous and Toxic Substances

Code: C416G0SU18L01

Concepts

- corrosiveness
- hazardous
- hazardous substances (hazardous materials)
- hazardous waste
- ignitability
- reactivity
- resource Conservation and Recovery Act
- toxic
- toxicity

Lesson 2. Determining Regulations

Code: C416G0SU18L02

- acute toxicity
- chronic toxicity
- nonpersisten pollutants
- persistent pollutants
- synergism

• threshold level

Lesson 3. Hazardous Wastes

Code: C416G0SU18L03

Concepts

- comprehensive Environmental Response
- compensation and Liability Act
- National Priorities List

Lesson 4. Hazardous-Waste Management Choices

Code: C416G0SU18L04

Concepts

- incineration
- land disposal
- pollution prevention
- pollution-prevention hierarchy
- waste minimization

Lesson 5. Hazardous-Waste Management

Code: C416G0SU18L05

Unit 19. Environmental Policy and Decision Making

At the end of this lesson, the student will:

- Explain how the executive, judicial and legislative branches of the U.S. government interact in forming policy.
- Understand how environmental laws are enforced in the United States.
- Describe the forces that led to changes in environmental policy in the United States during the past three decades.
- Understand the history of the major U.S. environmental legislation.
- Understand why some individuals in the United States are concerned about environmental regulations.
- Understand what is meant by "green" politics.
- Describe the reasons environmentalism is a growing factor in international relations.
- Understand the factors that could result in "ecoconflicts".
- Understand why it is not possible to separate politics and the environment.
- Explain how citizen pressure can influence governmental environmental policies.

Lesson 1. New Challenges for a New Century

Code: C416G0SU19L01

Concept

• governance

Lesson 2. Development of Environmental Policy in the United States

Code: C416G0SU19L02

Concepts

- executive branch
- government branches
- judicial branch
- legislative branch
- policy

Lesson 3. Environmental Policy and Regulation

Code: C416G0SU19L03

- ambiguous role for science
- complexity
- delayed consequences
- national vs regional conflict
- polarization
- winners and losers

Lesson 4. The Greening of Geopolitics / Terrorism

Code: C416G0SU19L04

Concept

- environmental terrorism
- Lesson 5. International Environmental Policy

Code: C416G0SU19L05